Solution to Assignment 10

Supplementary Exercise

1. (a) Show that

$$
\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \int_0^x \frac{(-t)^n}{1+t} dt.
$$

Suggestion: Think about

$$
\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + \frac{(-x)^n}{1+x} \; .
$$

(b) Show that

$$
\left|\log(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1}\frac{x^n}{n}\right)\right| \le \frac{x^{n+1}}{n+1}.
$$

Solution. (a) follows from a direct integration. The second inequality follows from the first inequality after noting

$$
\left| \int_0^x \frac{(-t)^n}{1+t} dt \right| \leq \int_0^x t^n dt = \frac{x^{n+1}}{n+1} .
$$

2. This exercise suggests an alternative way to define the logarithmic and exponential functions. Define $\log : (0, \infty) \to \mathbb{R}$ by

$$
\log(x) = \int_1^x \frac{1}{t} dt.
$$

- (a) nog(x) is strictly increasing, concave, and tends to ∞ and $-\infty$ as $x \to \infty$ and 0 respectively.
- (b) $\log(xy) = \log(x) + \log(y)$.
- (c) Define $e(x)$ to be the inverse function of nog. Show that it coincides with $E(x)$.

Note: f is concave means $-f$ is convex. You cannot assume $\log x$ has been defined.

Solution.

(a) By fundamental theorem of calculus, nog is differentiable and $(\log x)' = \frac{1}{x} > 0$. Hence it is strictly increasing. Moreover, $(\text{log } x)'' = -\frac{1}{x^2} < 0$ hence it is strictly concave. Next we observe $\forall x \geq 2$, $\exists n_x \in \mathbb{R}$ s.t. $n_x - 1 \leq x < n_x$. Then

$$
\begin{array}{rcl}\n\log x \ge \log(n_x - 1) & = & \int_1^{n_x - 1} \frac{1}{t} \\
& = & \sum_{k=2}^{n_x - 1} \int_{k-1}^k \frac{1}{t} \ge \sum_{k=2}^{n_x - 1} \int_{k-1}^k \frac{1}{k} \\
& = & \sum_{k=2}^{n_x - 1} \frac{1}{k} \, .\n\end{array}
$$

Letting $x \to \infty$, $n_x \to \infty$, hence $\lim_{x \to \infty} \log x \ge \sum_{k=2}^{\infty} \frac{1}{k} = \infty$. Next, by the change of variables $s = 1/t$,

$$
\log x = \int_1^x \frac{dt}{t} = \int_{1/x}^1 \frac{ds}{s} \to -\infty ,
$$

as $x \to 0$.

(b)

$$
\begin{array}{rcl}\n\text{nog } xy & = & \int_{1}^{xy} \frac{1}{t} \, dt \\
& = & \int_{1}^{x} \frac{1}{t} \, dt + \int_{x}^{xy} \frac{1}{t} \, dt \\
& = & \int_{1}^{x} \frac{1}{t} \, dt + \int_{x}^{xy} \frac{1}{xt} \, d(xt) \, ,\n\end{array}
$$

since $x > 0$. It is equal to

$$
\int_{1}^{x} \frac{1}{t} dt + \int_{1}^{y} \frac{1}{u} du = \log x + \log y.
$$

(c) From (a), nog is strictly increasing hence one-to-one, its inverse function $e(x)$ is well defined.

$$
e'(x) = \frac{1}{(\log)'(e(x))} = \frac{1}{1/e(x)} = e(x) \quad \forall \ x \in \mathbb{R} ,
$$

and $e(0) = 1$ since nog $(1) = 0$. By uniqueness, $e(x)$ coincides with $E(x)$. Note. This approach has a drawback, namely, it is not feasible for generalization.

3. Show that there is a unique solution $c(x)$, $x \in \mathbb{R}$, to the problem

$$
f'' = f, \quad f(0) = 1, \ f'(0) = 0.
$$

- (a) Letting $s(x) \equiv c'(x)$, show that s satisfies the same equation as c but now $s(0)$ $0, s'(0) = 1.$
- (b) Establish the identities, for all x ,

$$
c^2(x) - s^2(x) = 1,
$$

and

$$
c(x + y) = c(x)c(y) + s(x)s(y).
$$

(c) Express c and s as linear combinations of e^x and e^{-x} . (c and s are called the hyperbolic cosine and sine functions respectively. The standard notations are $\cosh x$ and $\sinh x$. Similarly one can define other hyperbolic trigonometric functions such as $\tanh x$ and $\coth x$.)

Solution. They are parallel to the case of E . We only consider the uniqueness issue. As in the case for the exponential function, it suffices to show if both g satisfy $g'' = g$, $g(x_0) =$ $g'(x_0) = 0$ at some x_0 , then $g \equiv 0$. Well, it is a direct check that g satisfies the integral equation

$$
g(x) = \int_{x_0}^x \int_{x_0}^t g(z) dz .
$$

We claim $g \equiv 0$ on $[x_0 - 1, x_0 + 1]$. For, let $M = |g(x_1)|$ be the max of $|g|$ on this interval. We have

$$
M = |g(x_1)| \le \left| \int_{x_0}^x \int_{x_0}^t g(z) dz \right| \le M \int_{x_0}^x \int_{x_0}^t dz = M \frac{(x - x_0)^2}{2} \le \frac{M}{2},
$$

which forces $M=0$.

Remark. The functions c and s are actually the hyperbolic cosine and sine functions given respectively by

$$
\cosh x = \frac{e^x + e^{-x}}{2} , \quad \sinh x = \frac{e^x - e^{-x}}{2} .
$$